General Information

Structure type
Deformed/Undeformed
Geological Setting ,
Outcropping/buried
Evaporite unit/s name
Evaporite unit/s age
Evaporite unit/s origin
Classif. (Hudec and Jackson, 2009)
Classif. (Jackson and Talbot, 1986)
Age of evaporite flow or deformation (when deformed) ,
Other comments North dipping listric faults acted during the Lower Cretaceous extension, creating salt rollers and rafts above the Triassic evaporite layer.

Location

Location

Map (detail)

Location
Location

Geological map

Location

Cross section

Location

Structure type (Hudec and Jackson, 2009)

Location

Regional Stratigraphy

Location

Other maps 1

Location

Other maps 2

Generic Data

Unique ID 35
Name Cabárceno-Obregon
Structure type Evaporite diapir
Deformed/Undeformed Deformed
Buried/Outcropping Outcropping
Geological setting Basque-Cantabrian Basin
Geological Regional Setting Cantabrian Block
Evaporite unit/s name Keuper facies
Evaporite unit/s age Carnian-Rhaetian (Upper Triassic)
Evaporite unit/s era Mesozoic
Evaporite unit/s origin Marine
Evaporite unit/s composition Gypsum-Halite-Anhydrite-Claystone-Ophites
Post-kinematic unit/s (or post-evaporite units when evaporites are undeformed) Quaternary (alluvial and colluvial detrital deposits)
Post-kinematic unit/s age (or post-evaporite units when evaporites are undeformed) Pleistocene-Holocene
Classification (Hudec and Jackson, 2009) Passive piercement
Classification (Jackson and Talbot, 1986) Salt roller
Mining activity? Y
Mining activity start Roman Empire
Mining activity end
Mining galleries?
Mining products Limestone (other uses)
Mining sub-products
Evaporite flow? Y
Age of evaporite flow Neocomian – Albian (early stage) and Oligocene – Miocene (late stage)
Flow or deformation triggering mechanisms Mesozoic extensional regime in the Basque–Cantabrian Basin (listric faults and salt tectonics, early stage) and Tertiary compression (reverse faulting, reactivated salt diapirism and N-vergent salt sheets by low-angle trusting)
Flow-linked structures? Y
Halokinetic structures Normal high-angle faults / joints / thickness variations / progressive unconformities
Post-evaporite and pre-kinematic unit/s (overbuden) Lower-Middle Jurassic (dolomitic brecchias, limestones and marls)
Syn-kinematic unit/s Late Jurassic – Berriasian (Purbeck facies, shallow marine clastics, clays and marls) / Valanginian – Barremian (Weald facies, limestones, clays and sandstones) / Aptian – Albian (limestones, marls, sandstones and lutites) / Oligocene – Miocene (sandstones and conglomerates)
Available seismic profiles STC84-16 / STC3 / STC18 / STC4 / STC84-13 / STC4-P / STC-16 / STC84-12 / STC84-16 / STC84-11 / STC3 / STC4 / STC84-13 / STC18 /
Available boreholes GAJANO-1 / GAJANO-2 / GAJANO-3 / OLLAS-1
Additional comments North dipping listric faults acted during the Lower Cretaceous extension, creating salt rollers and rafts above the Triassic evaporite layer.

Mining Data

UNIQUE_ID 35
Minning exploitations within <2km? Y
Historical/Active Active
Exploitation name #1 EL CASTILLO
Exploitation ID (Spanish National Mining Cadastre) #1 41975
Municipality #1 Medio Cudeyo
Province #1 CANTABRIA
Company #1 MANUEL GOMEZ LLOREDA, S.A
Main minning Products #1 Limestone (other uses)
Exploitation name #2 TEJERA DE NAVAS DEL TURUJAL
Exploitation ID (Spanish National Mining Cadastre) #2 21276/91
Municipality #2 Cabezón de la Sal
Province #2 CANTABRIA
Company #2 RECICLADOS DE CABEZON S.L.
Main minning Products #2 Claystone
Exploitation name #3
Exploitation ID (Spanish National Mining Cadastre) #3
Municipality #3
Province #3
Company #3
Main minning Products #3

Quantitative Data

UNIQUE_ID 35
Outcropping area (km2) 18.69883
Horizontal intersection area (km2) (when buried) Not buried
Depth of intersection area (km2) (when buried) Not buried
Max. Width (Km) 6.7
Max. Length (Km) 7
Max. Evaporites thickness (km) 1.8
Max. Deformation age (Ma) 140
Min. Deformation age (Ma) 12
Deformation stages 2

Reference Data

UNIQUE_ID 35
Section source Cámara, P., 2017. Salt and Strike-Slip Tectonics as Main Drivers in the Structural Evolution of the Basque-Cantabrian Basin, Spain. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 371-393). Elsevier. [link]
Well / Borehole availability #1 Cámara, P., 2017. Salt and Strike-Slip Tectonics as Main Drivers in the Structural Evolution of the Basque-Cantabrian Basin, Spain. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 371-393). Elsevier. [link]
Well / Borehole availability #2 n.a.
Available data (Stratigraphy) #1 Cámara, P., 2017. Salt and Strike-Slip Tectonics as Main Drivers in the Structural Evolution of the Basque-Cantabrian Basin, Spain. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 371-393). Elsevier. [link]
Available data (Stratigraphy) #2 Cámara, P., 2020. Inverted turtle salt anticlines in the eastern basque-cantabrian basin, Spain. Marine and Petroleum Geology, 104358. [link]
Available data (Stratigraphy) #3 Pujalte, V., 1982. La evolución paleogeográfica de la cuenca ‘Wealdense’de Cantabria. Cuadernos de Geología Ibérica, 8, 65-83. [link]
Available data (Stratigraphy) #4 Pujalte, V., 1976. Posibilidad de una nueva división estratigráfica de los sedimentos no marinos del Jurásico superior y Cretácico inferior, en la provincia de Santander. Boletín Geológico Minero, 57, 101–118.
Available data (Stratigraphy) #5 Pedrera, A., García‐Senz, J., Ayala, C., Ruiz‐Constán, A., Rodríguez‐Fernández, L. R., Robador, A., González Menéndez, L., 2017. Reconstruction of the exhumed mantle across the North Iberian Margin by crustal‐scale 3‐D gravity inversion and geological cross section. Tectonics, 36, 3155-3177. [link]
Available data (Stratigraphy) #6 de las Heras, J. G., de Vega, J. A. R., 1999. Dissolution Mining and environmental Effects in Polanco (Cantabria – Spain). – In (Fernández Rubio, R., ed.): Mine, Water & Environment II. – p. 807-814. [link]
Regional Stratigraphy Pedrera, A., García‐Senz, J., Ayala, C., Ruiz‐Constán, A., Rodríguez‐Fernández, L. R., Robador, A., González Menéndez, L., 2017. Reconstruction of the exhumed mantle across the North Iberian Margin by crustal‐scale 3‐D gravity inversion and geological cross section. Tectonics, 36, 3155-3177. [link]
Seismic data availability #1 n.a.
Seismic data availability #2 n.a.
Seismic data availability #3 n.a.
Available data (Structure) #1 Cámara, P., 2017. Salt and Strike-Slip Tectonics as Main Drivers in the Structural Evolution of the Basque-Cantabrian Basin, Spain. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 371-393). Elsevier. [link]
Available data (Structure) #2 Pedrera, A., García‐Senz, J., Ayala, C., Ruiz‐Constán, A., Rodríguez‐Fernández, L. R., Robador, A., González Menéndez, L., 2017. Reconstruction of the exhumed mantle across the North Iberian Margin by crustal‐scale 3‐D gravity inversion and geological cross section. Tectonics, 36, 3155-3177. [link]
Available data (Structure) #3 Pujalte, V., 1982. La evolución paleogeográfica de la cuenca ‘Wealdense’de Cantabria. Cuadernos de Geología Ibérica, 8, 65-83. [link]
Available data (Structure) #4 n.a.
Available data (Structure) #5 n.a.
Available data (Structure) #6 n.a.
Available data (Analogue modelling) #1 n.a.
Available data (Analogue modelling) #2 n.a.
Available data (Analogue modelling) #3 n.a.
Available data (Gravimetry – Tomography) #1 Ayala, C., Bohoyo, F., Maestro, A., Reguera, M. I., Torne, M., Rubio, F., Fernández, M., García-Lobón, J. L., 2016. Updated Bouguer anomalies of the Iberian Peninsula: a new perspective to interpret the regional geology. Journal of Maps, 12(5), 1089-1092. [link]
Available data (Gravimetry – Tomography) #2 n.a.
Available data (Gravimetry – Tomography) #3 n.a.
Available data (Geochemistry) #1 Béziat, D., Joron, J.L., Monchoux, P., Treuil, M., Walgenwitz, F., 1991. Geodynamic implications of geochemical data for the Pyrenean ophites (Spain-France). Chemical Geology, 89, 243-262. [link]
Available data (Geochemistry) #2 Iribar, V., Ábalos, B. 2011. The geochemical and isotopic record of evaporite recycling in spas and salterns of the Basque Cantabrian basin, Spain. Applied geochemistry, 26, 1315-1329. [link]
Available data (Geochemistry) #3 Ortí, F., García-Veigas, J., Rossell, L., Jurado, M. J., Utrilla, R., 1996. Formaciones salinas de las cuencas triásicas en la Península Ibérica: Caracterización Petrológica y Geoquímica. Cuadernos de Geología Ibérica, 20, 13-35. [link]
Available data (Geochemistry) #4 de las Heras, J. G., de Vega, J. A. R., 1999. Dissolution Mining and environmental Effects in Polanco (Cantabria – Spain). – In (Fernández Rubio, R., ed.): Mine, Water & Environment II. – p. 807-814. [link]
Available data (Petrophysics) #1 Llamas, B., Castañeda, M. C., Laín, C., Pous, J., 2017. Study of the Basque–Cantabrian basin as a suitable region for the implementation of an energy storage system based on compressed air energy storage (CAES). Environmental Earth Sciences, 76(5), 204. [link]
Available data (Petrophysics) #2 Soto, R., Beamud, E., Roca, E., Carola, E., Almar, Y., 2017. Distinguishing the effect of diapir growth on magnetic fabrics of syn-diapiric overburden rocks: Basque-Cantabrian basin, Northern Spain. Terra Nova 29, 191-201. [link]
IGME Geological Map (MAGNA50) Sheet number 35-Santander. [link]
Other Maps #1 (source) Perona, J., 2016. Mineralizaciones de Pb-Zn asociadas a los diapiros de Murguía y Orduña (Cuenca Vasco-Cantábrica) [PhD thesis]: Barcelona, Universitat de Barcelona, 281 pp. [link]
Other Maps #2 (source) Poprawski, Y., Basile, C., 2018. Long-lasting diapir growth history in the Basque-Cantabrian basin (Northern Spain): a review. Conference poster, Advances in Salt Tectonics: Observations, Applications, and Perspective: In Honor of Martin P.A. Jackson. [link]
Other related references #1 García-Codrón, J. C., 1989. Los lapiaces de agujas de Peña Cabarga (Cantabria): génesis y significado de una forma original. Cuadernos de Investigación Geográfica, 15, 17-28. [link]
Other related references #2 Sanz, T., Lago, M., Gil, A., Galé, C., Ramajo, J., Ubide, T., Pocoví, A., Tierz, P., Larrea, P., 2013. The Upper Triassic alkaline magmatism in the NW Iberian Chain (Spain). Journal of Iberian Geology, 39, 202-222. [link]
Other related references #3 Kennedy, W. J., and Bilotte, M., 2014. Cenomanian ammonites from Santander (Cantabria) and Sopeira (Aragón, southcentral Pyrenees), northern Spain. Treballs del Museu de Geologia de Barcelona, 20, 21–32. [link]
Other related references #4 Martín-Chivelet, J., López-Gómez, J., Aguado, R., Arias, C., Arribas, J., Arribas, M. E., … , Casas-Sainz, A., 2019. The Late Jurassic–Early Cretaceous Rifting. In (Quesada C., Oliveira J., eds.): The Geology of Iberia: A Geodynamic Approach. Regional Geology Reviews. Springer, Cham. [link]