General Information

Structure type
Deformed/Undeformed
Geological Setting ,
Outcropping/buried
Evaporite unit/s name
Evaporite unit/s age
Evaporite unit/s origin
Classif. (Hudec and Jackson, 2009)
Classif. (Jackson and Talbot, 1986)
Age of evaporite flow or deformation (when deformed) ,
Other comments Diapir developed in transtensional zones along a strike-slip fault, and then being reactivated during highly-oblique sinistral transpression in the Miocene. Highly squeezed during the Betic orogeny (see Davidson et al., 2020).

Location

Location

Map (detail)

Location
Location

Geological map

Location

Cross section

Location

Structure type (Hudec and Jackson, 2009)

Location

Regional Stratigraphy

Location

Other maps 1

Location

Other maps 2

Generic Data

Unique ID 99
Name Porto de Mos
Structure type Evaporite-cored anticline
Deformed/Undeformed Deformed
Buried/Outcropping Outcropping
Geological setting Lusitanian Basin
Geological Regional Setting Eastern Domain
Evaporite unit/s name Dagorda Fm.
Evaporite unit/s age Late Rhaetian-Hettangian (Upper Triassic-Lower Jurassic)
Evaporite unit/s era Mesozoic
Evaporite unit/s origin Marine
Evaporite unit/s composition Gypsum-Marlstone-Halite-Bituminous dolomite-Shales
Post-kinematic unit/s (or post-evaporite units when evaporites are undeformed) Pliocene (siltstones, sandstones, conglomerates) ; Quaternary (alluvial and colluvial detrital deposits)
Post-kinematic unit/s age (or post-evaporite units when evaporites are undeformed) Pliocene-Holocene
Classification (Hudec and Jackson, 2009) Passive piercement
Classification (Jackson and Talbot, 1986) Salt wall
Mining activity? N
Mining activity start
Mining activity end
Mining galleries?
Mining products
Mining sub-products
Evaporite flow? Y
Age of evaporite flow Kimmeridgian-Cenomanian and late Cretaceous-Miocene (main reactivation stage)
Flow or deformation triggering mechanisms Differential sedimentary loading developed during the late Triassic to early Jurassic rift tectonics
Flow-linked structures? Y
Halokinetic structures Normal faults / anticline-syncline folding / margins uplift
Post-evaporite and pre-kinematic unit/s (overbuden) Lower Jurassic (Coimbra and San Miguel Fms., dolostones) ; Mid Early Jurassic (Agua das Medeiros, Vale das Fontes and Lemede Fms, marlstones, marly limestones, limestones) ; Late Early Jurassic-Middle Jurassic (Brenha Fm., limestones, marly limestones) ; Late Jurassic (Complexo Carbonoso and Montejunto, marlstones and limestones)
Syn-kinematic unit/s Kimmeridgian (Alcobasa Fm., limestones and marly limestones) ; Tithonian (Lourinha Fm., sandstones and conglomerates)
Available seismic profiles
Available boreholes
Additional comments Diapir developed in transtensional zones along a strike-slip fault, and then being reactivated during highly-oblique sinistral transpression in the Miocene. Highly squeezed during the Betic orogeny (see Davidson et al., 2020)

Mining Data

UNIQUE_ID 99
Minning exploitations within <2km? N
Historical/Active
Exploitation name #1
Exploitation ID (Spanish National Mining Cadastre) #1
Municipality #1
Province #1
Company #1
Main minning Products #1
Exploitation name #2
Exploitation ID (Spanish National Mining Cadastre) #2
Municipality #2
Province #2
Company #2
Main minning Products #2
Exploitation name #3
Exploitation ID (Spanish National Mining Cadastre) #3
Municipality #3
Province #3
Company #3
Main minning Products #3

Quantitative Data

UNIQUE_ID 99
Outcropping area (km2) 5.18671
Horizontal intersection area (km2) (when buried) Not buried
Depth of intersection area (km2) (when buried) Not buried
Max. Width (Km) 14.7899337
Max. Length (Km) 2.27966216
Max. Evaporites thickness (km) 1.9
Max. Deformation age (Ma) 157
Min. Deformation age (Ma) 15
Deformation stages 2

Reference Data

UNIQUE_ID 99
Section source dos Reis, R. P., Pimentel, N., Fainstein, R., Reis, M., Rasmussen, B., 2017. Influence of salt diapirism on the basin architecture and hydrocarbon prospects of the Western Iberian Margin. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 313-329). Elsevier. [link]
Well / Borehole availability #1 Davison, I., Barreto, P., 2020. Deformation and sedimentation processes, and hydrocarbon accumulations on upturned salt diapir flanks in the Lusitanian Basin, Portugal. Petroleum Geoscience, 27(1). [link]
Well / Borehole availability #2 Pimentel, N., Pena dos Reis, R., 2016. Petroleum systems of the West Iberian Margin: A review of the Lusitanian Basin and the deep offshore Peniche Basin. Journal of Petroleum Geology, 39(3), 305-326. [link]
Available data (Stratigraphy) #1 Davison, I., Barreto, P., 2020. Deformation and sedimentation processes, and hydrocarbon accumulations on upturned salt diapir flanks in the Lusitanian Basin, Portugal. Petroleum Geoscience, 27(1). [link]
Available data (Stratigraphy) #2 Alves, T. M., Manuppella, G., Gawthorpe, R. L., Hunt, D. W., Monteiro, J. H., 2003. The depositional evolution of diapir-and fault-bounded rift basins: examples from the Lusitanian Basin of West Iberia. Sedimentary Geology, 162(3-4), 273-303. [link]
Available data (Stratigraphy) #3 dos Reis, R. P., Pimentel, N., Fainstein, R., Reis, M., Rasmussen, B., 2017. Influence of salt diapirism on the basin architecture and hydrocarbon prospects of the Western Iberian Margin. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 313-329). Elsevier. [link]
Available data (Stratigraphy) #4 Carneiro, J. F., Matos, C. R., Van Gessel, S., 2019. Opportunities for large-scale energy storage in geological formations in mainland Portugal. Renewable and Sustainable Energy Reviews, 99, 201-211. [link]
Available data (Stratigraphy) #5 Pimentel, N., Pena dos Reis, R., 2016. Petroleum systems of the West Iberian Margin: A review of the Lusitanian Basin and the deep offshore Peniche Basin. Journal of Petroleum Geology, 39(3), 305-326. [link]
Available data (Stratigraphy) #6 n.a.
Regional Stratigraphy Davison, I., Barreto, P., 2020. Deformation and sedimentation processes, and hydrocarbon accumulations on upturned salt diapir flanks in the Lusitanian Basin, Portugal. Petroleum Geoscience, 27(1). [link]
Seismic data availability #1 dos Reis, R. P., Pimentel, N., Fainstein, R., Reis, M., Rasmussen, B., 2017. Influence of salt diapirism on the basin architecture and hydrocarbon prospects of the Western Iberian Margin. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 313-329). Elsevier. [link]
Seismic data availability #2 Davison, I., Barreto, P., 2020. Deformation and sedimentation processes, and hydrocarbon accumulations on upturned salt diapir flanks in the Lusitanian Basin, Portugal. Petroleum Geoscience, 27(1). [link]
Seismic data availability #3 Carvalho, J. M. F., 2013. Tectónica e caraterização da fraturação do Maciço Calcário Estremenho, Bacia Lusitaniana. Contributo para a prospeção de rochas ornamentais e ordenamento da atividade extrativa [Ph.D. thesis:]: Universidade de Lisboa, Faculdade de Ciências, Departamento de Geologia, 449pp. [link]
Available data (Structure) #1 Pereira, N., Carneiro, J. F., Araújo, A., Bezzeghoud, M., Borges, J., 2014. Seismic and structural geology constraints to the selection of CO2 storage sites—The case of the onshore Lusitanian basin, Portugal. Journal of Applied Geophysics, 102, 21-38. [link]
Available data (Structure) #2 dos Reis, R. P., Pimentel, N., Fainstein, R., Reis, M., Rasmussen, B., 2017. Influence of salt diapirism on the basin architecture and hydrocarbon prospects of the Western Iberian Margin. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 313-329). Elsevier. [link]
Available data (Structure) #3 Davison, I., Barreto, P., 2020. Deformation and sedimentation processes, and hydrocarbon accumulations on upturned salt diapir flanks in the Lusitanian Basin, Portugal. Petroleum Geoscience, 27(1). [link]
Available data (Structure) #4 Rasmussen, E. S., Lomholt, S., Andersen, C., Vejbæk, O. V., 1998. Aspects of the structural evolution of the Lusitanian Basin in Portugal and the shelf and slope area offshore Portugal. Tectonophysics, 300(1-4), 199-225. [link]
Available data (Structure) #5 Pimentel, N., Pena dos Reis, R., 2016. Petroleum systems of the West Iberian Margin: A review of the Lusitanian Basin and the deep offshore Peniche Basin. Journal of Petroleum Geology, 39(3), 305-326. [link]
Available data (Structure) #6 n.a.
Available data (Analogue modelling) #1 n.a.
Available data (Analogue modelling) #2 n.a.
Available data (Analogue modelling) #3 n.a.
Available data (Gravimetry – Tomography) #1 dos Reis, R. P., Pimentel, N., Fainstein, R., Reis, M., Rasmussen, B., 2017. Influence of salt diapirism on the basin architecture and hydrocarbon prospects of the Western Iberian Margin. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 313-329). Elsevier. [link]
Available data (Gravimetry – Tomography) #2 Connors, K., Pryer, L., Mcwhorter, R., Torguson, B., 2012. Basement influence within the Lusitanian Basin. Third Central & North Atlantic Conjugate Margins Conference, Trinity College, Abstracts, 31-32. [link]
Available data (Gravimetry – Tomography) #3 Ayala, C., Bohoyo, F., Maestro, A., Reguera, M. I., Torne, M., Rubio, F., Fernández, M., García-Lobón, J. L., 2016. Updated Bouguer anomalies of the Iberian Peninsula: a new perspective to interpret the regional geology. Journal of Maps, 12(5), 1089-1092. [link]
Available data (Geochemistry) #1 Spigolon, A. L. D., Pena dos Reis, R. P. B., Pimentel, N. L., Matos, V. G. A. E., 2011. Geoquímica orgânica de rochas potencialmente geradoras de petróleo no contexto evolutivo da Bacia Lusitânica, Portugal. Bol Geoci Petrobras, 19, 131-162. [link]
Available data (Geochemistry) #2 Ferroni, G., Rockenbauch, K., Rivolta, F., McWhorter, R., 2013. In-Situ Geochemical Analysis of Rock Samples from Simultaneous Wells Enables Field-Wide Formation Characterization in Real-Time. In SPWLA 54th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts. [link]
Available data (Geochemistry) #3 Ferreira, E., Mateus, A., Azerêdo, A. C., Duarte, L. V., Mendonça-Filho, J., Tassinari, C. C., 2020. Tracing bottom-water redox conditions during deposition of Lower and Upper Jurassic organic-rich sedimentary rocks in the Lusitanian Basin (Portugal): Insights from inorganic geochemistry. Marine and Petroleum Geology, 104343. [link]
Available data (Geochemistry) #4 n.a.
Available data (Petrophysics) #1 Sêco, S. L., Silva, R. L., Watson, N., Duarte, L. V., Pereira, A. J., Wach, G., 2019. Application of petrophysical methods to estimate total organic carbon in Lower Jurassic source rocks from the offshore Lusitanian Basin (Portugal). Journal of Petroleum Science and Engineering, 180, 1058-1068. [link]
Available data (Petrophysics) #2 Azerêdo, A. C., Inês, N., & Bizarro, P., 2020. Carbonate reservoir outcrop analogues with a glance at pore-scale (Middle Jurassic, Lusitanian Basin, Portugal). Marine and Petroleum Geology, 111, 815-851. [link]
IGME Geological Map (MAGNA50) Sheet number n.a.
Other Maps #1 (source) Davison, I., Barreto, P., 2020. Deformation and sedimentation processes, and hydrocarbon accumulations on upturned salt diapir flanks in the Lusitanian Basin, Portugal. Petroleum Geoscience, 27(1). [link]
Other Maps #2 (source) Davison, I., Barreto, P., 2020. Deformation and sedimentation processes, and hydrocarbon accumulations on upturned salt diapir flanks in the Lusitanian Basin, Portugal. Petroleum Geoscience, 27(1). [link]
Other related references #1 dos Reis, P., Cunha, P. P., Dinis, J., Trincão, P. R., 2000. Geological evolution of the Lusitanian Basin (Portugal) during the Late Jurassic. 5th Jurassic Symposium, Vancouver, 6, 345-356. [link]
Other related references #2 Mateus, O., Dinis, J., & Cunha, P. P., 2017. The Lourinhã Formation: the Upper Jurassic to lower most Cretaceous of the Lusitanian Basin, Portugal–landscapes where dinosaurs walked. Ciências da Terra/Earth Sciences Journal, 19(1), 75-97. [link]
Other related references #3 n.a.
Other related references #4 n.a.