General Information

Structure type
Deformed/Undeformed
Geological Setting ,
Outcropping/buried
Evaporite unit/s name
Evaporite unit/s age
Evaporite unit/s origin
Classif. (Hudec and Jackson, 2009)
Classif. (Jackson and Talbot, 1986)
Age of evaporite flow or deformation (when deformed)
Other comments Bicorp-Quesa, Navarrés and Sellent salt wall segments constitute a continuous kinked salt wall of Middle to Upper Triassic evaporites, that crosses the central part of the Valencian domain. Miocene evolution divided into three major phases: initial extensional phase during which the graben system formed and the diapir rose; a second phase during which regional shortening closed the diapir; and a third phase characterized by normal faulting during which diapirism was reactivated (see Roca et al., 1996).

Location

Location

Map (detail)

Location
Location

Geological map

Location

Cross section

Location

Structure type (Hudec and Jackson, 2009)

Location

Regional Stratigraphy

Location

Other maps 1

Location

Other maps 2

Generic Data

Unique ID 33
Name Bicorp-Quesa
Structure type Evaporite diapir
Deformed/Undeformed Deformed
Buried/Outcropping Outcropping
Geological setting Betic System
Geological Regional Setting Prebetic Cordillera
Evaporite unit/s name Keuper facies
Evaporite unit/s age Carnian-Rhaetian (Upper Triassic)
Evaporite unit/s era Mesozoic
Evaporite unit/s origin Continental
Evaporite unit/s composition Gypsum-Marlstones-Sandstones-Halite-Anhydrite
Post-kinematic unit/s (or post-evaporite units when evaporites are undeformed) Quaternary (alluvial and colluvial detrital deposits)
Post-kinematic unit/s age (or post-evaporite units when evaporites are undeformed) Holocene
Classification (Hudec and Jackson, 2009) Passive piercement
Classification (Jackson and Talbot, 1986) Salt wall
Mining activity? N
Mining activity start
Mining activity end
Mining galleries?
Mining products
Mining sub-products
Evaporite flow? Y
Age of evaporite flow Aquitanian – Langhian (early stage) and Lower Tortonian (late stage)
Flow or deformation triggering mechanisms Extension: formation of a horsts and graben system (early stage) and normal reactivation of the major pre-existing contractional faults and thrust welds (late stage)
Flow-linked structures? Y
Halokinetic structures Normal high-angle faults / thrust faults / joints / thickness variations
Post-evaporite and pre-kinematic unit/s (overbuden) Jurassic (limestones and dolostones) / Albian-Aptian (marly dolostones and limestones) / Lower Cretaceous (dolostones and limestones) / Cenomanian-Turonian (marly dolostones, limestones and shales) / Senonian (limestones) /
Syn-kinematic unit/s Lower-Middle Miocene (red mudstones, conglomerates, and sandstones
of alluvial origin, and minor lacustrine limestones) / early Tortonian (grey and red mudstones and sandstones overlain by a sequence of mudstones, limestones and dolostones) / upper Miocene (thin bedded limestones with abundant gastropods) / upper Miocene (alluvial conglomerates)
Available seismic profiles
Available boreholes ABRULLADOR / BARRANCO PELOTERO / GARROFERAL / BARRANCO DE AGUAS / FRIJOLET (BARRANCO FRIJOLET) / MONTECARLO / LAGOS / MANAL / CALDERON / BANCAL ROJO / CALDERON-II / CEMENTERIO / CORRAL BLANCO / RIO CAZUMA (BICORP)
Additional comments Bicorp-Quesa, Navarrés and Sellent salt wall segments constitute a continuous kinked salt wall of Middle to Upper Triassic evaporites, that crosses the central part of the Valencian domain. Miocene evolution divided into three major phases: initial extensional phase during which the graben system formed and the diapir rose; a second phase during which regional shortening closed the diapir; and a third phase characterized by normal faulting during which diapirism was reactivated (see Roca et al., 1996)

Mining Data

UNIQUE_ID 33
Minning exploitations within <2km? N
Historical/Active
Exploitation name #1
Exploitation ID (Spanish National Mining Cadastre) #1
Municipality #1
Province #1
Company #1
Main minning Products #1
Exploitation name #2
Exploitation ID (Spanish National Mining Cadastre) #2
Municipality #2
Province #2
Company #2
Main minning Products #2
Exploitation name #3
Exploitation ID (Spanish National Mining Cadastre) #3
Municipality #3
Province #3
Company #3
Main minning Products #3

Quantitative Data

UNIQUE_ID 33
Outcropping area (km2) 18.84879
Horizontal intersection area (km2) (when buried) Not buried
Depth of intersection area (km2) (when buried) Not buried
Max. Width (Km) 5.6
Max. Length (Km) 17.1
Max. Evaporites thickness (km) 2.5
Max. Deformation age (Ma) 23
Min. Deformation age (Ma) 10
Deformation stages 2

Reference Data

UNIQUE_ID 33
Section source Rubinat, M., Ledo, J., Roca, E., Rosell, O., Queralt, P., 2010. Magnetotelluric characterization of a salt diapir: a case study on Bicorb–Quesa Diapir (Prebetic Zone, SE Spain). Journal of the Geological Society, 167(1), 145-153. [link]
Well / Borehole availability #1 Roca, E., Sans, M., Koyi, H. A., 2006. Polyphase deformation of diapiric areas in models and in the eastern Prebetics (Spain). AAPG bulletin, 90(1), 115-136. [link]
Well / Borehole availability #2 n.a.
Available data (Stratigraphy) #1 Ortí-Cabo, F., 1974. El Keuper del Levante español: litostratigrafía, petrología y paleogeografía de la cuenca [Ph.D. thesis]: Universitat de Barcelona, 267pp. [link]
Available data (Stratigraphy) #2 Rubinat-Cabanas, M., 2012. Basement fault influence on the Bicorb-Quesa Salt Wall kinematics, insights from Magnetotelluric and Paleomagnetic techniques on Salt Tectonics [Ph.D. thesis]: Universitat de Barcelona, Barcelona, 169pp. [link]
Available data (Stratigraphy) #3 Gagliardo, M., Piñol, F. C., Caselli, A., Tripaldi, A., Limarino, C. O., 2000. Evolución tectonosedimentaria de la cuenca Miocena de» Piggy-Back» de Rodeo-Iglesia (San Juan, Argentina). Geotemas (Madrid), (2), 77-79. [link]
Available data (Stratigraphy) #4 Santisteban, C., Ruíz-Sánchez, F., Bello, D., 1989. Los depósitos lacustres del Terciario de Bicorp (Valencia). Acta geológica hispánica, 24(3), 299-307. [link]
Available data (Stratigraphy) #5 Roca, E., Anadón, P., Utrilla, R., Vázquez, A., 1996. Rise, closure and reactivation of the Bicorb–Quesa evaporite diapir, eastern Prebetics, Spain. Journal of the Geological Society, 153(2), 311-321. [link]
Available data (Stratigraphy) #6 Arche, A., López-Gómez, J., García-Hidalgo, J. F., 2002. Control climático, tectónico y eustático en depósitos del Carniense (Triásico Superior) del SE de la Península Ibérica. Journal of Iberian Geology, 28, 13-30. [link]
Regional Stratigraphy Navarro-Carrasco, Ó., Meléndez-Hevia, I., 2020. Geology and evolution of the Cortes de Pallás diapir (Eastern Iberia). Journal of Maps, 16(2), 625-637. [link]
Seismic data availability #1 n.a.
Seismic data availability #2 n.a.
Seismic data availability #3 n.a.
Available data (Structure) #1 Roca, E., Anadón, P., Utrilla, R., Vázquez, A., 1996. Rise, closure and reactivation of the Bicorb–Quesa evaporite diapir, eastern Prebetics, Spain. Journal of the Geological Society, 153(2), 311-321. [link]
Available data (Structure) #2 Roca, E., Beamud, E., Rubinat, M., Soto, R., Ferrer, O., 2013. Paleomagnetic and inner diapiric structural constraints on the kinematic evolution of a salt-wall: The Bicorb-Quesa and northern Navarrés salt-wall segments case (Prebetic Zone, SE Iberia). Journal of Structural Geology, 52, 80-95. [link]
Available data (Structure) #3 Rubinat, M., Ledo, J., Roca, E., Rosell, O., Queralt, P., 2010. Magnetotelluric characterization of a salt diapir: a case study on Bicorb–Quesa Diapir (Prebetic Zone, SE Spain). Journal of the Geological Society, 167(1), 145-153. [link]
Available data (Structure) #4 Rubinat-Cabanas, M., 2012. Basement fault influence on the Bicorb-Quesa Salt Wall kinematics, insights from Magnetotelluric and Paleomagnetic techniques on Salt Tectonics [Ph.D. thesis]: Universitat de Barcelona, Barcelona, 169pp. [link]
Available data (Structure) #5 Roca, E., Sans, M., Koyi, H. A., 2006. Polyphase deformation of diapiric areas in models and in the eastern Prebetics (Spain). AAPG bulletin, 90(1), 115-136. [link]
Available data (Structure) #6 n.a.
Available data (Analogue modelling) #1 Roca, E., Sans, M., Koyi, H. A., 2006. Polyphase deformation of diapiric areas in models and in the eastern Prebetics (Spain). AAPG bulletin, 90(1), 115-136. [link]
Available data (Analogue modelling) #2 n.a.
Available data (Analogue modelling) #3 n.a.
Available data (Gravimetry – Tomography) #1 Rubinat-Cabanas, M., 2012. Basement fault influence on the Bicorb-Quesa Salt Wall kinematics, insights from Magnetotelluric and Paleomagnetic techniques on Salt Tectonics [Ph.D. thesis]: Universitat de Barcelona, Barcelona, 169pp. [link]
Available data (Gravimetry – Tomography) #2 n.a.
Available data (Gravimetry – Tomography) #3 n.a.
Available data (Geochemistry) #1 Cuairán, J. B., Inglès, M., Cabo, F. O., 1987. Observaciones sobre mineralogía y geoquímica de lutitas del Keuper de Valencia. Cuadernos de Geología Ibérica, 11, 363-384. [link]
Available data (Geochemistry) #2 Ortí, F., García-Veigas, J., Rossell, L., Jurado, M. J., Utrilla, R., 1996. Formaciones salinas de las cuencas triásicas en la Península Ibérica: Caracterización Petrológica y Geoquímica. Cuadernos de Geología Ibérica, 20, 13-35. [link]
Available data (Geochemistry) #3 n.a.
Available data (Geochemistry) #4 n.a.
Available data (Petrophysics) #1 Soto, R., Beamud, E., Oliva-Urcia, B., Roca, E., Rubinat, M., Villalaín, J. J., 2014. Applicability of magnetic fabrics in rocks associated with the emplacement of salt structures (the Bicorb–Quesa and Navarrés salt walls, Prebetics, SE Spain). Tectonophysics, 629, 319-334. [link]
Available data (Petrophysics) #2 Roca, E., Beamud, E., Rubinat, M., Soto, R., Ferrer, O., 2013. Paleomagnetic and inner diapiric structural constraints on the kinematic evolution of a salt-wall: The Bicorb-Quesa and northern Navarrés salt-wall segments case (Prebetic Zone, SE Iberia). Journal of Structural Geology, 52, 80-95. [link]
IGME Geological Map (MAGNA50) Sheet number 769-Navarres. [link]
Other Maps #1 (source) Escosa, F. O., Ferrer, O., Roca, E., 2018. Geology of the Eastern Prebetic Zone at the Jumilla region (SE Iberia). Journal of Maps, 14(2), 77-86. [link]
Other Maps #2 (source) Rubinat-Cabanas, M., 2012. Basement fault influence on the Bicorb-Quesa Salt Wall kinematics, insights from Magnetotelluric and Paleomagnetic techniques on Salt Tectonics [Ph.D. thesis]: Universitat de Barcelona, Barcelona, 169pp. [link]
Other related references #1 Ortí-Cabo, F., 1974. El Keuper del Levante español. Estudios Geológicos, 30. [link]
Other related references #2 Escosa, F. O., Roca, E., 2016. The external eastern prebetics: Paper of basement faults in an inverted salt-bearing passive margin. In International Conference and Exhibition, Barcelona, Spain, 3-6 April 2016 (pp. 273-273). Society of Exploration Geophysicists and American Association of Petroleum Geologists. [link]
Other related references #3 Escosa, F. O., 2019. Extensional development and contractional reactivation of salt walls: examples from the southeastern Paradox Basin (SW Colorado) and the Eastern Prebetic Zone (SE Spain) [Ph.D. thesis]: Universitat de Barcelona, Barcelona, 249pp. [link]
Other related references #4 Martín-Chivelet, J., López-Gómez, J., Aguado, R., Arias, C., Arribas, J., Arribas, M. E., … , Casas-Sainz, A., 2019. The Late Jurassic–Early Cretaceous Rifting. In (Quesada C., Oliveira J., eds.): The Geology of Iberia: A Geodynamic Approach. Regional Geology Reviews. Springer, Cham. [link]