General Information

Structure type
Deformed/Undeformed
Geological Setting ,
Outcropping/buried
Evaporite unit/s name
Evaporite unit/s age
Evaporite unit/s origin
Classif. (Hudec and Jackson, 2009)
Classif. (Jackson and Talbot, 1986)
Age of evaporite flow or deformation (when deformed) ,
Other comments Matacães diapir geometry is the result of different tectonic periods (distensive-compressive) that were registered in the Lusitanian Basin, with special relevance to the Miocene compressive period. In this context, the Matacaes Diapir has intermediary characteristics between a salt glacier and a "salt tongue" (see Miranda et al., 2010)

Location

Location

Map (detail)

Location
Location

Geological map

Location

Cross section

Location

Structure type (Hudec and Jackson, 2009)

Location

Regional Stratigraphy

Location

Other maps 1

Location

Other maps 2

Generic Data

Unique ID 143
Name Matacaes
Structure type Evaporite diapir
Deformed/Undeformed Deformed
Buried/Outcropping Outcropping
Geological setting Lusitanian Basin
Geological Regional Setting Central Domain
Evaporite unit/s name Dagorda Fm.
Evaporite unit/s age Late Rhaetian-Hettangian (Upper Triassic-Lower Jurassic)
Evaporite unit/s era Mesozoic
Evaporite unit/s origin Marine
Evaporite unit/s composition Gypsum-Marlstone-Halite-Bituminous dolomite-Shales
Post-kinematic unit/s (or post-evaporite units when evaporites are undeformed) Late Miocene (Moreia Fm., claystones, sandstones and conglomerates) ; Pliocene and Quaternary (alluvial and colluvial detrital deposits)
Post-kinematic unit/s age (or post-evaporite units when evaporites are undeformed) Late Paleogene-Holocene
Classification (Hudec and Jackson, 2009) Passive piercement
Classification (Jackson and Talbot, 1986) Salt wall
Mining activity? N
Mining activity start
Mining activity end
Mining galleries?
Mining products
Mining sub-products
Evaporite flow? Y
Age of evaporite flow Oxfordian-Aptian (initial stage) and late Cretaceous-Miocene (main reactivation stage)
Flow or deformation triggering mechanisms Extensional tectonics and Late Jurassic-Early Cretaceous rifting in the Lusitanian basin (initial stage) and Alpine compression and basin inversion (main stage)
Flow-linked structures? Y
Halokinetic structures Syncline-Anticline folding / normal faults / thrust faults
Post-evaporite and pre-kinematic unit/s (overbuden) Early-Middle Jurassic (Brenha Fm., marlstones, limestones and marly limestones)
Syn-kinematic unit/s Oxfordian-Kimmeridgian (Alcobaça Fm., marlstones and limestones) ; Tithonian (Lourinha-Boa Viagem Fm., sandstones, claystones and conglomerates) ; Berriasian-Aptian (Torres Vedras Fm., sandstones and claystones) ; Late Cretaceous-Miocene (Grés Superiores-Gándara Fm., sandstones and claystones)
Available seismic profiles
Available boreholes
Additional comments Matacaes diapir geometry is the result of different tectonic periods (distensive-compressive) that were registered in the Lusitanian Basin, with special relevance to the Miocene compressive period. In this context, the Matacaes Diapir has intermediary characteristics between a namakier and a «salt tongue» (see Miranda et al., 2010)

Mining Data

UNIQUE_ID 143
Minning exploitations within <2km? N
Historical/Active
Exploitation name #1
Exploitation ID (Spanish National Mining Cadastre) #1
Municipality #1
Province #1
Company #1
Main minning Products #1
Exploitation name #2
Exploitation ID (Spanish National Mining Cadastre) #2
Municipality #2
Province #2
Company #2
Main minning Products #2
Exploitation name #3
Exploitation ID (Spanish National Mining Cadastre) #3
Municipality #3
Province #3
Company #3
Main minning Products #3

Quantitative Data

UNIQUE_ID 143
Outcropping area (km2) 2.74971
Horizontal intersection area (km2) (when buried) Not buried
Depth of intersection area (km2) (when buried) Not buried
Max. Width (Km) 1.8
Max. Length (Km) 2.9
Max. Evaporites thickness (km) 3.2
Max. Deformation age (Ma) 163
Min. Deformation age (Ma) 15
Deformation stages 2

Reference Data

UNIQUE_ID 143
Section source dos Reis, R. P., Pimentel, N., Fainstein, R., Reis, M., Rasmussen, B., 2017. Influence of salt diapirism on the basin architecture and hydrocarbon prospects of the Western Iberian Margin. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 313-329). Elsevier. [link]
Well / Borehole availability #1 n.a.
Well / Borehole availability #2 n.a.
Available data (Stratigraphy) #1 Miranda, J. P., Figueiredo, F. P. O., Pimentel, N. L., 2010. Aquisicao e modelagem de dados gravimetricos sobre o diapiro salino de Matacaes (Torres Vedras, Bacia Lusitanica, Portugal). Boletim da Geociencias da Petrobras, 19(1), 2. [link]
Available data (Stratigraphy) #2 Duarte, L. V., 2007. Lithostratigraphy, sequence stratigraphy and depositional setting of the Pliensbachian and Toarcian series in the Lusitanian Basin (Portugal). Ciencias de la Tierra, 16, 17-23. [link]
Available data (Stratigraphy) #3 Alves, T. M., Manuppella, G., Gawthorpe, R. L., Hunt, D. W., Monteiro, J. H., 2003. The depositional evolution of diapir-and fault-bounded rift basins: examples from the Lusitanian Basin of West Iberia. Sedimentary Geology, 162(3-4), 273-303. [link]
Available data (Stratigraphy) #4 dos Reis, R. P., Pimentel, N., Fainstein, R., Reis, M., Rasmussen, B., 2017. Influence of salt diapirism on the basin architecture and hydrocarbon prospects of the Western Iberian Margin. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 313-329). Elsevier. [link]
Available data (Stratigraphy) #5 Davison, I., Barreto, P., 2020. Deformation and sedimentation processes, and hydrocarbon accumulations on upturned salt diapir flanks in the Lusitanian Basin, Portugal. Petroleum Geoscience, 27(1). [link]
Available data (Stratigraphy) #6 Uphoff, T. L., 2005. Subsalt (pre-Jurassic) exploration play in the northern Lusitanian basin of Portugal. AAPG bulletin, 89(6), 699-714. [link]
Regional Stratigraphy Davison, I., Barreto, P., 2020. Deformation and sedimentation processes, and hydrocarbon accumulations on upturned salt diapir flanks in the Lusitanian Basin, Portugal. Petroleum Geoscience, 27(1). [link]
Seismic data availability #1 n.a.
Seismic data availability #2 n.a.
Seismic data availability #3 n.a.
Available data (Structure) #1 Miranda, J. P., Figueiredo, F. P. O., Pimentel, N. L., 2010. Aquisicao e modelagem de dados gravimetricos sobre o diapiro salino de Matacaes (Torres Vedras, Bacia Lusitanica, Portugal). Boletim da Geociencias da Petrobras, 19(1), 2. [link]
Available data (Structure) #2 Pereira, N., Carneiro, J. F., Araújo, A., Bezzeghoud, M., Borges, J., 2014. Seismic and structural geology constraints to the selection of CO2 storage sites—The case of the onshore Lusitanian basin, Portugal. Journal of Applied Geophysics, 102, 21-38. [link]
Available data (Structure) #3 dos Reis, R. P., Pimentel, N., Fainstein, R., Reis, M., Rasmussen, B., 2017. Influence of salt diapirism on the basin architecture and hydrocarbon prospects of the Western Iberian Margin. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 313-329). Elsevier. [link]
Available data (Structure) #4 Rasmussen, E. S., Lomholt, S., Andersen, C., Vejbæk, O. V., 1998. Aspects of the structural evolution of the Lusitanian Basin in Portugal and the shelf and slope area offshore Portugal. Tectonophysics, 300(1-4), 199-225. [link]
Available data (Structure) #5 Davison, I., Barreto, P., 2020. Deformation and sedimentation processes, and hydrocarbon accumulations on upturned salt diapir flanks in the Lusitanian Basin, Portugal. Petroleum Geoscience, 27(1). [link]
Available data (Structure) #6 Pimentel, N., Pena dos Reis, R., 2016. Petroleum systems of the West Iberian Margin: A review of the Lusitanian Basin and the deep offshore Peniche Basin. Journal of Petroleum Geology, 39(3), 305-326. [link]
Available data (Analogue modelling) #1 n.a.
Available data (Analogue modelling) #2 n.a.
Available data (Analogue modelling) #3 n.a.
Available data (Gravimetry – Tomography) #1 Miranda, J., Figueiredo, F., Pimentel, N. ,Dos Reis, R. P., 2010. Modelação gravimétrica de um perfil sobre o Diapiro de Matacães (Torres Vedras–Bacia Lusitânica) Gravimetric modelling of a profile over the Matacães salt diapir (Torres Vedras–Lusitanian Basin). GEOTIC – Sociedade Geológica de Portugal, VIII Congresso Nacional de Geologia. [link]
Available data (Gravimetry – Tomography) #2 Miranda, J. P., Figueiredo, F. P. O., Pimentel, N. L., 2010. Aquisicao e modelagem de dados gravimetricos sobre o diapiro salino de Matacaes (Torres Vedras, Bacia Lusitanica, Portugal). Boletim da Geociencias da Petrobras, 19(1), 2. [link]
Available data (Gravimetry – Tomography) #3 Cardoso, F., Reis, M., Cortesão, A., Pena dos Reis, R., Pimentel, N., 2015. Diapiric structures in the Peniche Basin (Portugal)-location, deformation timings and importance to petroleum exploration. AAPG European Regional Conference & Exhibition 2015, #90226. [link]
Available data (Geochemistry) #1 n.a.
Available data (Geochemistry) #2 n.a.
Available data (Geochemistry) #3 n.a.
Available data (Geochemistry) #4 n.a.
Available data (Petrophysics) #1 Sêco, S. L., Silva, R. L., Watson, N., Duarte, L. V., Pereira, A. J., Wach, G., 2019. Application of petrophysical methods to estimate total organic carbon in Lower Jurassic source rocks from the offshore Lusitanian Basin (Portugal). Journal of Petroleum Science and Engineering, 180, 1058-1068. [link]
Available data (Petrophysics) #2 Azerêdo, A. C., Inês, N., & Bizarro, P., 2020. Carbonate reservoir outcrop analogues with a glance at pore-scale (Middle Jurassic, Lusitanian Basin, Portugal). Marine and Petroleum Geology, 111, 815-851. [link]
IGME Geological Map (MAGNA50) Sheet number n.a.
Other Maps #1 (source) Davison, I., Barreto, P., 2020. Deformation and sedimentation processes, and hydrocarbon accumulations on upturned salt diapir flanks in the Lusitanian Basin, Portugal. Petroleum Geoscience, 27(1). [link]
Other Maps #2 (source) Miranda, J. P., Figueiredo, F. P. O., Pimentel, N. L., 2010. Aquisicao e modelagem de dados gravimetricos sobre o diapiro salino de Matacaes (Torres Vedras, Bacia Lusitanica, Portugal). Boletim da Geociencias da Petrobras, 19(1), 2. [link]
Other related references #1 Carneiro, J. F., Matos, C. R., Van Gessel, S., 2019. Opportunities for large-scale energy storage in geological formations in mainland Portugal. Renewable and Sustainable Energy Reviews, 99, 201-211. [link]
Other related references #2 Carvalho, J. M. F., 2013. Tectónica e caraterização da fraturação do Maciço Calcário Estremenho, Bacia Lusitaniana. Contributo para a prospeção de rochas ornamentais e ordenamento da atividade extrativa [Ph.D. thesis:]: Universidade de Lisboa, Faculdade de Ciências, Departamento de Geologia, 449pp. [link]
Other related references #3 Mateus, O., Dinis, J., & Cunha, P. P., 2017. The Lourinhã Formation: the Upper Jurassic to lower most Cretaceous of the Lusitanian Basin, Portugal–landscapes where dinosaurs walked. Ciências da Terra/Earth Sciences Journal, 19(1), 75-97. [link]
Other related references #4 dos Reis, P., Cunha, P. P., Dinis, J., Trincão, P. R., 2000. Geological evolution of the Lusitanian Basin (Portugal) during the Late Jurassic. 5th Jurassic Symposium, Vancouver, 6, 345-356. [link]