General Information

Structure type
Deformed/Undeformed
Geological Setting ,
Outcropping/buried
Evaporite unit/s name
Evaporite unit/s age
Evaporite unit/s origin
Classif. (Hudec and Jackson, 2009)
Classif. (Jackson and Talbot, 1986)
Age of evaporite flow or deformation (when deformed) ,
Other comments NW continuation of the Cañada-Vellida (ID #093) salt wall. Halokinesis and growing stages reinterpreted by Vergés et al. (2020) and considered in this work.

Location

Location

Map (detail)

Location
Location

Geological map

Location

Cross section

Location

Structure type (Hudec and Jackson, 2009)

Location

Regional Stratigraphy

Location

Other maps 1

Location

Other maps 2

Generic Data

Unique ID 94
Name Pancrudo
Structure type Evaporite diapir
Deformed/Undeformed Deformed
Buried/Outcropping Outcropping
Geological setting Iberian Range
Geological Regional Setting Maestrat Basin (Galve sub-basin)
Evaporite unit/s name Keuper facies
Evaporite unit/s age Carnian-Rhaetian (Upper Triassic)
Evaporite unit/s era Mesozoic
Evaporite unit/s origin Marine
Evaporite unit/s composition Shale-Gypsum-Anhydrite
Post-kinematic unit/s (or post-evaporite units when evaporites are undeformed) Late Oligocene-Miocene (alluvial to lacustrine conglomerates, sandstones and shales), Quaternary (alluvial and colluvial detrital deposits)
Post-kinematic unit/s age (or post-evaporite units when evaporites are undeformed) Late Oligocene-Holocene
Classification (Hudec and Jackson, 2009) Thrust piercement
Classification (Jackson and Talbot, 1986) Salt wall
Mining activity? Y
Mining activity start
Mining activity end
Mining galleries?
Mining products Claystone
Mining sub-products
Evaporite flow? Y
Age of evaporite flow Upper Jurassic (early salt mobilization) ; Upper Valanginian-Upper Albian (main stage)
Flow or deformation triggering mechanisms Late Jurassic-Early Cretaceous rifting and alpine compression
Flow-linked structures? Y
Halokinetic structures Thickness variations / progressive unconformities / thrust faults / overturned flanks
Post-evaporite and pre-kinematic unit/s (overbuden) Early Jurassic (Cortes de Tajuña and Cuevas Labradas Fm., limestones and dolostones) ; Late Jurassic (Loriguilla and Higueruelas Fms., limestones and sandstones)
Syn-kinematic unit/s  Uppermost Jurassic (Arzobispo Fm., limestones and sandy limestones) ; Hauterivian (El Castellar Fm., limestones and sandstones) ; Barremian (Camarillas, Artoles, Morella and Xert Fms., clays, sandstones, marlstones, limestones) ; Early Aptian (Forcall and Villaroya de los Pinares Fms., marlstones, limestones and nodular limestones) ; Late Aptian (Benassal Fm., marlstone, limestone, nodular limestone) Albian (Escucha and Utrillas Fms., sandstones, claystones and quartz microconglomerates)
Available seismic profiles
Available boreholes
Additional comments NW continuation of the Cañada-Vellida salt wall. Halokinesis and growing stages reinterpreted by Vergés et al. (2020) and considered in this work.

Mining Data

UNIQUE_ID 94
Minning exploitations within <2km? Y
Historical/Active Active
Exploitation name #1 MILAGROS
Exploitation ID (Spanish National Mining Cadastre) #1 5275
Municipality #1 Alpeñés
Province #1 TERUEL
Company #1 MINERALES Y ARCILLAS «MAHU», S.L.
Main minning Products #1 Claystone
Exploitation name #2
Exploitation ID (Spanish National Mining Cadastre) #2
Municipality #2
Province #2
Company #2
Main minning Products #2
Exploitation name #3
Exploitation ID (Spanish National Mining Cadastre) #3
Municipality #3
Province #3
Company #3
Main minning Products #3

Quantitative Data

UNIQUE_ID 94
Outcropping area (km2) 9.82921
Horizontal intersection area (km2) (when buried) Not buried
Depth of intersection area (km2) (when buried) Not buried
Max. Width (Km) 15.6610455
Max. Length (Km) 3.42604664
Max. Evaporites thickness (km)
Max. Deformation age (Ma) 148
Min. Deformation age (Ma) 100
Deformation stages 2

Reference Data

UNIQUE_ID 94
Section source Tena, S., Casas Sainz, A., 1996. Estructura y cinemática de la falla de Alpeñés (Cordillera Ibérica). Geogaceta, 20(4), 789-791. [link]
Well / Borehole availability #1 n.a.
Well / Borehole availability #2 n.a.
Available data (Stratigraphy) #1 Vergés, J., Poprawski, Y., Almar, Y., Drzewiecki, P. A., Moragas, M., Bover‐Arnal, T., …, Hunt, D., 2020. Tectono‐Sedimentary Evolution of Jurassic‐Cretaceous diapiric structures: Miravete anticline, Maestrat Basin, Spain. Basin Research, 1-55. [link]
Available data (Stratigraphy) #2 Bover-Arnal, T., Moreno-Bedmar, J. A., Frijia, G., Pascual-Cebrian, E., Salas, R., 2016. Chronostratigraphy of the Barremian–Early Albian of the Maestrat Basin (E Iberian Peninsula): integrating strontium-isotope stratigraphy and ammonoid biostratigraphy. Newsletters on Stratigraphy, 49(1), 41-68. [link]
Available data (Stratigraphy) #3 Liesa, C. L., Simón, J. L., Casas, A. M., 2018. La tectónica de inversión en una región intraplaca: la Cordillera Ibérica. Revista de la Sociedad Geológica de España, 31(2), 23-50. [link]
Available data (Stratigraphy) #4 Simón, J. L., 2004. Superposed buckle folding in the eastern Iberian Chain, Spain. Journal of Structural Geology, 26(8), 1447-1464. [link]
Available data (Stratigraphy) #5 González, A. R., Guimerà, J., 1993. Sedimentación sintectónica en una cuenca transportada sobre una lámina de cabalgamiento: la cubeta terciaria de Aliaga. Revista de la Sociedad Geológica de España, 6(1), 151-165. [link]
Available data (Stratigraphy) #6 Nebot, M., Guimera, J., 2016. Structure of an inverted basin from subsurface and field data: the Late Jurassic-Early Cretaceous Maestrat Basin (Iberian Chain). Geologica Acta, 14(2). 0155-177. [link]
Regional Stratigraphy Vergés, J., Poprawski, Y., Almar, Y., Drzewiecki, P. A., Moragas, M., Bover‐Arnal, T., …, Hunt, D., 2020. Tectono‐Sedimentary Evolution of Jurassic‐Cretaceous diapiric structures: Miravete anticline, Maestrat Basin, Spain. Basin Research, 1-55. [link]
Seismic data availability #1 n.a.
Seismic data availability #2 n.a.
Seismic data availability #3 n.a.
Available data (Structure) #1 Vergés, J., Poprawski, Y., Almar, Y., Drzewiecki, P. A., Moragas, M., Bover‐Arnal, T., …, Hunt, D., 2020. Tectono‐Sedimentary Evolution of Jurassic‐Cretaceous diapiric structures: Miravete anticline, Maestrat Basin, Spain. Basin Research, 1-55. [link]
Available data (Structure) #2 Tena, S., Casas Sainz, A., 1996. Estructura y cinemática de la falla de Alpeñés (Cordillera Ibérica). Geogaceta, 20(4), 789-791. [link]
Available data (Structure) #3 Gómez, J. J., Fernández-López, S. R., 2006. The Iberian Middle Jurassic carbonate-platform system: Synthesis of the palaeogeographic elements of its eastern margin (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 236(3-4), 190-205. [link]
Available data (Structure) #4 Simón, J. L., Liesa, C. L., 2011. Incremental slip history of a thrust: diverse transport directions and internal folding of the Utrillas thrust sheet (NE Iberian Chain, Spain). Geological Society, London, Special Publications, 349(1), 77-97. [link]
Available data (Structure) #5 Nebot, M., Guimera, J., 2016. Structure of an inverted basin from subsurface and field data: the Late Jurassic-Early Cretaceous Maestrat Basin (Iberian Chain). Geologica Acta, 14(2). 0155-177. [link]
Available data (Structure) #6 Nebot, M., Guimerà, J., 2018. Kinematic evolution of a fold-and-thrust belt developed during basin inversion: the Mesozoic Maestrat basin, E Iberian Chain. Geological Magazine, 155(3), 630-640. [link]
Available data (Analogue modelling) #1 n.a.
Available data (Analogue modelling) #2 n.a.
Available data (Analogue modelling) #3 n.a.
Available data (Gravimetry – Tomography) #1 Ayala, C., Bohoyo, F., Maestro, A., Reguera, M. I., Torne, M., Rubio, F., Fernández, M., García-Lobón, J. L., 2016. Updated Bouguer anomalies of the Iberian Peninsula: a new perspective to interpret the regional geology. Journal of Maps, 12(5), 1089-1092. [link]
Available data (Gravimetry – Tomography) #2 n.a.
Available data (Gravimetry – Tomography) #3 n.a.
Available data (Geochemistry) #1 n.a.
Available data (Geochemistry) #2 n.a.
Available data (Geochemistry) #3 n.a.
Available data (Geochemistry) #4 n.a.
Available data (Petrophysics) #1 n.a.
Available data (Petrophysics) #2 n.a.
IGME Geological Map (MAGNA50) Sheet number 517-Argente. [link]
Other Maps #1 (source) Guimerà, J. J., 2018. Structure of an intraplate fold-and-thrust belt: The Iberian Chain. A synthesis. Geologica Acta, 16(4), 427-438. [link]
Other Maps #2 (source) Vergés, J., Poprawski, Y., Almar, Y., Drzewiecki, P. A., Moragas, M., Bover‐Arnal, T., …, Hunt, D., 2020. Tectono‐Sedimentary Evolution of Jurassic‐Cretaceous diapiric structures: Miravete anticline, Maestrat Basin, Spain. Basin Research, 1-55. [link]
Other related references #1 Meléndez, N., Liesa, C. L., Soria, A. R., Meléndez, A., 2009. Lacustrine system evolution during early rifting: el Castellar formation (Galve sub-basin, Central Iberian Chain). Sedimentary Geology, 222(1-2), 64-77. [link]
Other related references #2 Aurell, M., Bádenas, B., Gasca, J. M., Canudo, J. I., Liesa, C. L., Soria, A. R., …, Najes, L., 2016. Stratigraphy and evolution of the Galve sub-basin (Spain) in the middle Tithonian–early Barremian: implications for the setting and age of some dinosaur fossil sites. Cretaceous Research, 65, 138-162. [link]
Other related references #3 Peropadre, C., Liesa, C. L., Meléndez, N., 2013. High-frequency, moderate to high-amplitude sea-level oscillations during the late Early Aptian: Insights into the Mid-Aptian event (Galve sub-basin, Spain). Sedimentary Geology, 294, 233-250. [link]
Other related references #4 Navarrete, R., Rodríguez-López, J. P., Liesa, C. L., Soria, A. R., Fernanda de Mesquita, L. V., 2013. Changing physiography of rift basins as a control on the evolution of mixed siliciclastic–carbonate back-barrier systems (Barremian Iberian Basin, Spain). Sedimentary Geology, 289, 40-61. [link]